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In this study, we determine the fundamental role of the line of fifths for the organization of tonal material
by applying dimensionality reduction to a large historical corpus of pitch-class counts (ca. 1360–1940).
We observe a historically growing trend in the exploitation of the fifths range, i.e. the size of segments that
pitch-class distributions cover on the line of fifths. Moreover, we introduce the novel concept of pitch-
class (co-)evolution, which traces the changing co-occurrence of pitch classes over time and likewise
reaffirms the centrality of this linear tonal space from a historical angle, allowing us also to distinguish
between historical periods in terms of the usage of pitch classes.
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1. Introduction

There are various models of pitch space, comprising music-theoretical (Vogler 1802; Weber
1851; Hauptmann 1853; von Oettingen 1866; Hostinský 1879; Lerdahl 2001) as well as alge-
braic and geometrical approaches (Mazzola 1985; Lewin 1987; Chew 2000; Tymoczko 2011;
Harasim, Schmidt, and Rohrmeier 2016). Virtually all assume octave equivalence and most grant
the perfect fifth a fundamental role. In particular, this interval has been extensively studied in
the context of well-formed scales (Clough and Myerson 1985, 1986; Carey and Clampitt 1989;
Clough, Engebretsen, and Kochavi 1999; Noll 2010; Harasim, Schmidt, and Rohrmeier 2020).
The simplest pitch-space models are thus the circle and the line of fifths, the former taking enhar-
monic equivalence into account (Temperley 2000). While the circle of fifths and several more
complex models of pitch or interval spaces have been studied using quantitative and computa-
tional methods (Bigo and Andreatta 2016; Huang et al. 2017; Herremans and Chew 2019; Yust
2019; Lieck, Moss, and Rohrmeier 2020; Navarro-Cáceres et al. 2020; Harasim et al. 2021),
the fundamental line-of-fifths space has not yet been sufficiently examined in its own right with
data-driven corpus methods.

The goal of this study is to address this gap and examine the descriptive and explanatory power
of the line of fifths regarding pitch organization in the light of empirical data. More concretely,
our main question is: Can the central role of the perfect fifth for tonal organization be inferred
directly from a corpus of musical pieces? Since the tonal organization and the relations between
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notes it implies are subject to historical changes (Damschroder 2008; Brower 2008), we consider
the implications of historically contingent data, an issue that is rarely addressed in previous
approaches.

Our interpretation of the organization of tones in any conception of tonal space does not entail
in any way that these relations are physically or logically necessary – as Fétis (1844) assumed,
for example – but rather that they reflect underlying, possibly unconscious cognitive models of
composers, performers, or listeners (Benjamin 1982; Morgan 2003; Larson 2012). To illustrate
this point, consider a composition that contains an enharmonic reinterpretation of an augmented-
sixth chord as a dominant-seventh chord, e.g. (A�, C, E�, F�) ⇒ (A�, C, E�, G�). The mere
occurrence of this reinterpretation attests to the fact that the composer’s mental model of tonal-
ity generally allows for the option of enharmonic equivalence, whereas it does not necessarily
imply that the same composition never distinguishes between F� and G�. As another example,
the appearance of a chromatic passing tone in an otherwise diatonic composition reveals that
– at least in principle – chromaticism is a device that the composer may, but does not need to,
employ. It is thus reasonable not to assume that a single one of these mental models is the only,
authoritative conception of tonal relations. In other words, composers, performers, or listeners
may have several concurrent conceptions of how to combine notes to write music, or to express
and appreciate it. A piece of music can invoke any number of these mental models, one of which
is the topic of this study: the line of fifths.

In the following, we set up the theoretical and methodological framework for this study by
first presenting the corpus used for our investigation, and describing the sources from which
it is drawn. We then present a brief discussion of the concept of pitch classes and introduce
the notion of musical pieces as pitch-class distributions. Addressing our main research question
defined at the outset, we demonstrate that the line of fifths, our central object of interest, can
be shown to be a fundamental organization principle for musical pieces using dimensionality
reduction methods as commonly employed in machine learning. We subsequently exploit some
implications of this finding and trace the growing extent to which composers explore the line of
fifths on a historical scale. Based on this observation, we introduce the concept of pitch-class co-
evolution and demonstrate that the systematic co-occurrence of pitch classes reveal substantial
historical changes that allow us to draw important distinctions in the usage of pitch classes in
different historical periods.

2. The corpus

To address our research questions, we analyze the Tonal Pitch-Class Counts Corpus (TP3C;
Moss, Neuwirth, and Rohrmeier 2020),1 a large resource that consists of note counts in musical
pieces. It contains 2,012 pieces (2,707,112 notes) by 75 composers, and was assembled from
various resources. Many files have been taken from previously published research data sets such
as Renaissance scores from the Electronic Locator of Vertical Interval Successions (ELVIS)
project,2 and the Humdrum **kern scores of the Center for Computer Assisted Research in
the Humanities (CCARH).3 Other scores have been added from public repositories such as the

1 The corpus can be accessed at https://github.com/DCMLab/TP3C.
2 https://elvisproject.ca
3 http://kern.ccarh.org
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Figure 1. Chronological distribution of pieces in the TP3C corpus.

Choral Public Domain Library (CPDL),4 or the community web page of the music notation soft-
ware MuseScore,5 while others have been transcribed at the Digital and Cognitive Musicology
Lab (DCML).6 A full list of the pieces and sources used is given in Moss (2019).

In order to be useful for a historical study, each piece in the corpus must have a designated
date, but assigning a date to a composition can be difficult. Sometimes there lie many years
between the finalization of a composition and its publication which makes it difficult to decide
which year to choose to represent the piece; sometimes one of them (or even both) are uncertain
or unknown. We opted for the following procedure: For each piece in the corpus, the dates
of composition or publication were collected along with the scores as given in the respective
sources. In doubtful cases they were manually cross-checked with the metadata given by the
International Music Score Library Project (IMSLP).7 If the year of composition of a piece was
given, this year determined the date of the piece; otherwise, the publication date was used. In the
rare cases where both were unknown, the median of the composer’s life was taken as an estimate
of the year. This procedure provides a date value for each piece in the corpus. However, this
leads to only 173 unique years for the whole range of 582 years from 1361 to 1942.

Figure 1 shows the distribution of the pieces over time, and Table 1 shows the five most
frequent composers per century with the number of pieces they contribute in parentheses. It can
be seen that there are gaps in the historical timeline for which the corpus contains no pieces,
and that some epochs are represented more strongly than others, in particular the Renaissance
(ca. 1450–1550), the Baroque (ca. 1680–1730), and the Romantic periods (ca. 1800–1900). The
largest gaps in the data are 1377–1436 (59 years) between pieces composed by Machaut and
Binchois, 1517–1555 (38 years) between pieces by Isaac and Palestrina, 1648–1681 (33 years)
between pieces by Schütz and Corelli, and 1740–1774 (34 years) between pieces by Bach and
Mozart.

As it is common in observational studies (Rosenbaum 2010), caution is thus warranted when
one attempts to generalize any findings derived on the basis of this data set to the entire popula-
tion of polyphonic Western compositions too readily. The corpus is best suited for “macroscopic”
observations of general trends. While a complete coverage of the historical scope relevant to this

4 http://cpdl.org
5 http://musescore.com
6 https://dcml.epfl.ch
7 https://imslp.org/
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Table 1. Five most frequent composers and numbers of pieces per century in the corpus.

1361–1400 1401–1500 1501–1600 1601–1700 1701–1800 1801–1900 1901–1943
Machaut (6) Ockeghem (59) Victoria (28) Corelli (186) Bach (130) Alkan (152) Joplin (35)
Vitry (4) Dufay (48) Lasso (15) Gesualdo (27) Mozart (81) Chopin (109) Scriabin (28)

de la Rue (45) Palestrina (7) Buxtehude (19) Corelli (62) Schubert (80) Chaminade (25)
Desprez (27) Agricola (5) Monteverdi (12) Koželuh (60) Beethoven (69) Vaughan Williams (11)
Busnoys (20) Isaac (4) Frescobaldi (11) Beethoven (39) Scriabin (60) Ravel (11)

study is currently out of sight, mostly due to the lack of available digital resources, the agglom-
eration of pieces from different sources renders this data set one of the largest corpora used for
empirical studies on music history.

3. Notes as pitch classes

A note can be conceptualized as an event in a musical piece that has a certain pitch, a duration,
and specific location in that piece.8 It is moreover common to consider notes to be equivalent if
their respective pitches are related by one or multiple octaves, and thus to speak of pitch classes.
However, pitch classes come in two varieties. The first, most commonly used representation in
mathematical music theory, computational musicology, and music information retrieval distin-
guishes twelve different pitch classes, assuming the enharmonic equivalence of certain notes,
e.g. F� and G�, C� and B, etc. In empirical studies, the assumption of enharmonic equivalence is
often a consequence of music encoding formats such as MIDI, in which enharmonically equiv-
alent notes are indistinguishable. The two assumptions of octave and enharmonic equivalence
allow for a representation of pitch classes as residuals in Z12 and to represent them on a circle.
This arrangement is shown in Figure 2 and called the circle of fifths. The numbers represent pitch
classes in the order of fifths that can be transformed to chromatic ordering, the chromatic circle,
by the mapping t �→ 7t mod 12.

The second variant of pitch classes does not assume enharmonic equivalence but only that
octave-related notes are equivalent, and is hence more general. This representation allows one to
arrange pitch classes linearly (Weber 1851; Riemann 1900; Temperley 2000) on the line of fifths,
which is shown in Figure 3. One can associate each tonal pitch-class with an integer k ∈ Z such
that this integer represents the number of flats (negative integers) or sharps (positive integers)
of the signature of the key in which a given tonal pitch-class is the centre in fifths ordering. For
example, D is mapped to 0 because it lies in the middle of the scale of C major/A minor in fifth
ordering (no key signature); A� is mapped to −6 because it is the centre of G� major/E� minor (6
flats); and its enharmonically equivalent tonal pitch class G� is mapped to 6 because it lies at the
centre of F� major/D� minor (6 sharps). Yet another benefit of this representation is that we can
associate each tonal pitch-class with a colour. We chose a colour mapping in which positive inte-
gers (“sharper” or “harder” tonal pitch-classes) are associated with increasingly darker shades of
red, negative integers are associated with increasingly darker shades of blue (“flatter” or “softer”
tonal pitch-classes), and D is associated with white as the centre of the line of fifths. Following
Temperley (2000), we call the first, circular representation neutral pitch-classes and the second,
linear one tonal pitch-classes.9

8 Notes also have many other attributes: physical ones such as timbre or volume, and structural ones such as the voice
or formal unit in which they occur. Here, we consider only the pitch dimension.

9 While the transformation of tonal into neutral pitch-classes is achieved by deterministically mapping a tonal pitch-
class t ∈ Z to a neutral pitch-class t �→ t mod 12 ∈ Z12 (in fifths ordering), the reverse direction involves some kind of
inference and is called the problem of pitch spelling (Temperley 2001; Stoddard, Raphael, and Utgoff 2004; Chew and
Chen 2005; Cambouropoulos 2003; Meredith 2006; Foscarin, Audebert, and Fournier-S’niehotta 2021).
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Figure 2. Schematic depiction of the twelve neutral pitch-classes in Z12 on the circle of fifths. One representative of
each neutral pitch-class is shown as a tonal pitch-class label next to the node. The colouring of the nodes corresponds to
the colours of the keys on the piano.

Figure 3. Schematic depiction of the tonal pitch-classes on the line of fifths mapped to integers in Z.

The line of fifths does not only contain all tonal pitch-classes but also a number of common
musical scale types as contiguous sub-segments. For example, pentatonic scales are segments
of length 4 (containing five pitch classes), e.g. from G� to B�; diatonic scales are defined by
segments of length 6, e.g. from F to B; the early extensions of the natural diatonic scale by
B� and F� correspond to a span of eight fifths; and the two whole-tone scales correspond to
the odd and even numbers, respectively, since a whole tone consists of two consecutive perfect
fifths (see Figure 3). Theoretically, the line of fifths extends to infinity in both directions but in
actual compositions only a small segment of it is used. In the present study, we consider only the
segment from F�� to B�� (35 tonal pitch-classes) because no piece in the corpus contains tonal
pitch-classes outside this range. We can say that the tonal pitch-class vocabulary of the corpus
has size 35, consisting of the seven natural pitch-classes F, C, G, D, A, E, B, with zero, one, or
two sharps or flats, respectively.

The distinction between the two types of pitch classes is not only relevant for the encoding
and representation of music but also implies certain conceptualizations of the relations of tones
to one another. More specifically, neutral pitch-classes assume enharmonic equivalence which
is the basis for a range of musical styles, for instance the compositions based on twelve-tone
rows by the composers of the second Viennese school (Schoenberg 1975; Straus 2005). It is
also widely employed in jazz, and the basis for harmonic phenomena such as the tritone substi-
tution (Biamonte 2008; Rohrmeier 2020; Levine 1989, 1995). Enharmonic equivalence lies at
the heart of compositions by post-tonal composers who use scales that are based on symmetric
divisions of the octave, e.g. Stravinsky (Tymoczko 2002; Van Den Toorn 2003), Debussy (Forte
1991), Bartók (Lendvai 1971), and Messiaen (Messiaen 1944). On the other hand, the repre-
sentation of tonal pitch-classes with its distinction between enharmonically equivalent notes is
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more closely related to a diatonic conception of tonal space and may potentially entail tuning
systems other than equal temperament (Sethares 2005). Moreover, the two pitch-class repre-
sentations also relate to music notation and its orthography. The Western notation system has
mainly evolved to accommodate diatonic music (including modulations) where the tonal mate-
rial is confined to relatively small regions on the line of fifths. Music that is highly chromatic
or constructed from symmetrical scales can not always be notated correctly: a composer has to
chose a diatonic spelling, e.g. choose between F� and G�, even if the composition is meant to be
atonal. It is telling that musical orthography and its relation to tonality is largely discussed in the
context of 19th-century composers, e.g. Mendelssohn, Schumann, Chopin, or Liszt (Atlas 1990),
Mussorgsky (Perry 1995, 1998), Schubert (Cohn 1999; Noll 2009), or composers at the turn to
the 20th century, such as Scriabin (Perle 1984; Wai-Ling 1993) and Bartók (Gillies 1983).

4. Pieces as tonal pitch-class distributions

In natural language processing (NLP; Manning and Schütze 2003), the so-called bag-of-words
model is a widely used representation for texts. It describes a document by simply counting
all the words that it contains. We adopt this model and represent pieces as bags of notes.10

Accordingly, we count for each piece how many of the V = 35 tonal pitch-classes it contains. In
order to compare pieces of substantially different length, we normalize them and consider only
the proportions of pitch classes in a piece. That is, in our corpus with D = 2, 012 pieces in total,
each piece xd is represented by the relative frequencies of its tonal pitch-classes, a vector in 35-
dimensional space that contains positive real numbers and sums up to 1. In this high-dimensional
space, pieces with very different tonal pitch-class distributions are very distant, whereas pieces
that have similar tonal pitch-class distributions are relatively close to one another and potentially
form clusters.

The fact that all tonal pitch-classes can be arranged on the line of fifths (Section 3) will inform
our understanding of the pitch-class distributions in the corpus. Figure 4 shows the distribu-
tions of all tonal pitch classes in the corpus.11 As can be seen, pitch classes have been sorted
and coloured according to the line-of-fifths mapping shown in Figure 3. The average pitch-class
frequencies across all pieces are indicated by black dots and a 95% bootstrapped confidence inter-
val (10,000 samples) is shown by white error bands. The distribution of averages (black dots)
is approximately unimodal and symmetric but not Gaussian due to its heavy tails. This distribu-
tion of averages represents the vector pointing to the “center of mass” in the high-dimensional
pitch-class space. On average, and perhaps not surprisingly, the natural tonal pitch-classes (from
F to B) are most common, while altered tonal pitch-classes (with sharps or flats) are much less
frequent in the corpus. Moreover, they are centered around D, the exact middle of the natural
tonal pitch-classes in fifths order, and consequently the entire line of fifths. A similar result has
recently been obtained for Mozart’s piano sonatas (Hentschel, Neuwirth, and Rohrmeier 2021).
The distinctiveness of this shape is remarkable, being unimodal and almost symmetric, and is
a first indicator of the centrality of the line of fifths. However, this pattern only occurs on the
corpus, or population, level; individual pieces often have heavily skewed or even multimodal
tonal pitch-class distributions on the line of fifths. Note that this average distribution is based on

10 The representation of musical pieces as bags of notes is used in several recent computational studies on music,
e.g. Lieck, Moss, and Rohrmeier (2020); Harasim et al. (2021).

11 It is important to note that the bag-of-notes representation relies on the assumption that the V dimensions are
independent, meaning that this model does not a priori assume any particular order or dependencies between the tonal
pitch-classes.
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Figure 4. Relative frequencies of pitch classes per piece in the corpus (colored dots). The average frequency of pitch
classes is shown by black dots, and the white bands around the averages correspond to 95% confidence intervals based
on 10,000 bootstrapped samples.

the “raw” relative frequencies of tonal pitch-classes in the pieces of the corpus; they were not
transposed to a common key which would have obfuscated this pattern.12

The distribution in Figure 4 shows that the tonal pitch-class distributions of the pieces in
the corpus are concentrated around the natural tonal pitch-classes. This means that, on average,
most pieces contain only few tonal pitch-classes with accidentals. While this does not tell us, for
instance, whether the distributions of pieces in different keys are very similar or not, it does show
that not all keys are used in the same way. Rather, compositions are in general located around
the centre of the line of fifths, which may simply be related to the fact that this facilitates the
notation of the music.

In the next section, we address our main research question, showing that the relevance of the
line of fifths for the organization of tonal material in pitch-class space can be inferred directly
from the data in our corpus.

5. Recovering the line of fifths from data

A number of recent studies have used the geometrical interpretation of note distributions in pieces
as points in a high-dimensional space, based on large corpora of MIDI-encoded data (Huang et al.
2017; Weiß, Mauch, and Dixon 2018; Harasim et al. 2021). As mentioned above, this encoding
enforces the assumption of enharmonic equivalence and thus limits the extent to which tonal rela-
tionships can be extracted from a corpus, since musical pieces are represented by only twelve

12 Transposing pieces to a common key, potentially distinguishing between the major and minor mode, leads to so-
called tone profiles, commonly used in computational music research for key finding and related applications (Krumhansl
1990; Albrecht and Shanahan 2013; Huron 2006; Harasim et al. 2021)
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neutral pitch-classes. This is not the case here, where the corpus contains the exact spelling of
the pitches, and we only make the assumption of octave-related notes being equivalent. Since
the space we consider here has 35 dimensions, it is impossible to visualize this space and
the pieces contained in it in order to see whether their arrangement provides any meaningful
and interpretable information. We address this problem by using a well-established method for
dimensionality reduction called Principal Components Analysis (PCA; Bishop 2006) that trans-
forms the data into a lower-dimensional space, while at the same time maintaining characteristic
properties of the original, high-dimensional space. PCA thus can aid us to achieve a better under-
standing of the global structure of the relative positions of data points (musical pieces, in our
case). In order to perform PCA, the data is represented as a matrix

X =

⎡
⎢⎣

x�
1
...

x�
D

⎤
⎥⎦ ∈ [0, 1]D×V , (1)

where the rows are given by D data points (the pieces in the corpus), and the columns are given
by V features (the number of distinct tonal pitch-classes in the vocabulary). All entries in X range
from 0 to 1. PCA determines the M ≤ V largest directions and magnitudes of the variance in the
data in X by first calculating the covariance matrix

KX = cov[X , X ]

= E[(X − E[X ])(X − E[X ])�] ∈ R
D×D, (2)

where E denotes the expected value. The main directions of the variance in the data and their
magnitude are given by the eigenvectors wi and eigenvalues λi of KX , which are calculated by
solving the equation

KX · wi = λ · wi. (3)

The projection into the lower-dimensional space is then achieved by selecting the M largest
eigenvalues and their corresponding eigenvectors, and transforming the data to X ′, the dimen-
sionality reduction of X, by

X ′ = X · [w1, . . . , wM ] ∈ R
D×M , (4)

where each row of X ′ ∈ R
M corresponds to the data points in the reduced space. The sum of

all eigenvalues λi is the total amount of variance in the data and the variance explained by each
principal component is given by λi/

∑
j λj. In the present context, X was transformed to have

zero mean before applying PCA, but the variance was not standardized to 1. This is justified
by the fact that all features are on the same scale, and because the differences in the variance
between the respective tonal pitch-classes is of particular interest here.

Figure 5 shows the data reduced to the two-dimensional Euclidean plane R
2. Each dot repre-

sents a piece and the colour of each piece corresponds to the line-of-fifths position of its tonal
centre, which we operationalize as the most frequent tonal pitch-class in that piece.13 The dimen-
sionality reduction shows that pieces with similar colouring are close together and additionally
shows that the colours are largely ordered along the line of fifths. This means that musical pieces
that have tonal centres which are close to one another on the line of fifths also have similar
tonal pitch-class distributions. This result is to be expected since neighbouring keys along the

13 This definition follows Tymoczko (2011, 4) who defines “centricity” – which can be established by the most frequent
note – as one of the core components of tonality. See also Moss et al. (2019) who employ a similar concept for the
centricity of chords.
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Figure 5. Dimensionality reduction via PCA. Points represent pieces and the colouring corresponds to the position of
the tonal centre of each piece on the line of fifths.

line of fifths share all tones but one of their respective scales, corroborating the adequacy of our
method. However, this result also shows that the expected adjacency of keys generally extends
from their scales to distributions of pitch-classes, largely due to the fact the most frequent tones in
tonal pieces commonly are the tonic and the dominant, which are, of course, related by a perfect
fifth.

One of the advantages of PCA is that the dimensions in the reduced space, called the principal
components, can be well interpreted since they express how much of data variance in the original
space is retained in the reduced space. While PCA is one of the most commonly used methods for
dimensionality reduction, there are many others (each of which relies on particular assumptions
about the distribution of the data). In a qualitative comparison, Locally Linear Embeddings (LLE;
Roweis and Saul 2000) achieved a similar result by also largely arranging the data along the line
of fifths. By contrast, t-distributed Stochastic Neighbor Embeddings (t-SNE), which emphasizes
the local over the global structure of the data (Van Der Maaten and Hinton 2008), found multiple
sub-clusters that were relatively homogeneous with respect to the tonal centres, thus emphasizing
more strongly the local similarities between pieces than the global structure of the space. These
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Figure 6. First two principal components for the tonal pitch-class distributions.

results are reported in Moss (2019). In the present context, we opted for PCA because it preserves
most of the global structure, and the interpretation of the results is straight-forward. The first two
components are shown separately in Figure 6.

The first principal component (PC1, top panel) distinguishes the two directions, ascending vs.
descending (red vs. blue colouring), of the line of fifths departing from D, the most frequent
tonal pitch-class in the corpus. This dimension accounts for 41 percent of the total data variance.
This is evidently related to the tonality of pieces because keys that are closer to one another
on the line of fifths have a larger intersection of tonal pitch-classes. For example, the scale of
the F major key shares all but one tonal pitch-class with that of B� major, which is its direct
neighbour on the line of fifths, but it does not share any tonal pitch-classes with the scale of F�

major, which is seven fifths apart from F major. Of course, pieces rarely use only the tonal pitch-
classes of their main key. They can employ many out-of-key notes, e.g. in modulations to more
distant keys, in chromatic passages, or when using altered chords. The first principle component
is thus not directly related to the concept of keys (as expressed, for instance by their diatonic
scale content or their tone profiles) but rather to a more general conception of the global tonal
organization of a piece and the position of its tonal centre on the line of fifths. However, it is also
important to note that the distance to D cannot be the only factor underlying the distribution in
this component. If that were the case, we would observe monotonically increasing bars towards
the extremes of the line of fifths. The fact that the bars first grow and than progressively shrink
(in both directions) means that distance on the line of fifths is a very important factor for the
distribution of pitch classes around the centre of the line of fifths, but that this factor is not as
strong (but still observable) for more extreme pitch classes.

The second principal component (PC2, bottom panel) represents the distance to the centre
of the line of fifths – regardless of the direction – and distinguishes pieces with natural tonal
centres (from F to B; white or very light colours) from more altered tonal pitch-classes (darker
shades of blue and red). This distinction accounts for 23 percent of the variance in the data.
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The first two principal components represent the direction (shown by the colour hue) and the
distance (shown by the colour intensity) on the line of fifths. They together account for a total of
64 percent of the variance in the data but greatly simplify the space from 35 dimensions to just
two. The dimensionality reduction of tonal pitch-class distributions thus captures two important
aspects of accounting for tonal organization in terms of the line of fifths, namely direction and
proximity.

6. Historical expansion along the line of fifths

Based on the centrality of the line of fifths for the organization of tonal material in the corpus as a
whole, we now turn to the question whether historical changes in pitch-class distributions can be
observed as well. The tonal pitch-class distribution in each piece does not only occupy a position
on the line of fifths through its tonal centre, it also defines a range, the smallest line-of-fifths
segment that contains all of its tonal pitch-classes. The length of this segment, in turn, determines
which intervals can potentially be used in this piece, thus also imposing certain restrictions on
the harmonic makeup. For example, a piece containing only the pitch classes D and A can only
contain the intervals of the unison and the fifth as well as their complements, the octave and the
fourth (and octave multiples thereof). A piece that contains only natural tonal pitch-classes can,
by definition, not contain any chromatic notes so its interval content only allows for the diatonic
but not the chromatic semitone.

We call the length of a line-of-fifths segment containing all tonal pitch-classes in a piece the
fifths range of that piece (Gárdonyi and Nordhoff 2002; Weiß, Mauch, and Dixon 2018). Note
that this measure is invariant under transposition, i.e. transposing the piece to a different key will
not change its interval content and hence not its fifths range. As explained above, the fifths range
of strictly diatonic pieces is at most 6, while pieces with larger fifths ranges contain chromatic
notes; pieces with a fifths range larger than 12 potentially contain enharmonically equivalent
notes. It is thus reasonable to expect that the fifths range of pieces increases over time since, for
example, Renaissance pieces rarely contain chromaticism,14 while that feature becomes much
more frequent in Classical and in particular in Romantic compositions. The simple measure of
the fifths range enables us to compare all pieces in the corpus and to trace the historical changes
regarding the spread of musical pieces on the line of fifths, and their potential interval content.

The fifths range of all pieces in the corpus is shown in Figure 7. The two horizontal lines
(gray, dashed) separate the diatonic (bottom) from the chromatic (middle) and enharmonic (top)
segments. In order to arrive at a better view of the macroscopic historical trend in this distribu-
tion of pieces, we employ a method called Locally Weighted Scatterplot Smoothing (LOWESS;
Cleveland and Devlin 1988). This procedure returns a trend line that takes local variations into
account. LOWESS fits a local polynomial regression not to the entire data set but to a neighbour-
hood of each data point that is determined by a fraction parameter δ defining what percentage of
the whole data is taken into account when calculating the regressions. The larger this fraction is
the smoother the resulting LOWESS curve will be. Here, this parameter was set to δ = 0.2, taking
a rather large proportion of the data into account to reflect the overall macroscopic perspective
of our study. Note that the range of years covered by the neighbourhood can vary, depending
on how the data is distributed over time. In periods with fewer pieces, a larger time range will
be taken into account and vice versa. This is why the lines are much smoother before ca. 1700
and show much more variability in later decades and centuries. The weights for this regression
are chosen so that they give less weight to data points further away from x0. A commonly used

14 The encodings of pieces in the corpus may contain ficta that have been added by an editor, which may explain why
most Renaissance pieces fall in the chromatic rather than the diatonic segment.
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Figure 7. Diachronic changes in the fifth-range of tonal pitch-class distributions of musical pieces, shown as LOWESS
trend lines. Selected pieces with minimal (Desprez, Satie) and maximal (Chopin) fifths range are marked with a cross. A
slight jitter has been added to the scatter plot to avoid overlapping points (not affecting the LOWESS curves).

weighting function is the so-called tricube function,

w(xi) = (1 − |xi − x0|3)3. (5)

Moreover, in order to obtain an estimate of the variance in the data, we apply so-called bootstrap
resampling (Efron and Tibshirani 1993), where one repeatedly samples with replacement new
data sets from the original distribution of pieces. The bundle of red lines in Figure 7 shows 500
bootstrapped LOWESS regression lines.15

One can see that, over the course of the historical time span under consideration, there is
a substantial increase in the fifth range of musical pieces. While there are very few entirely
diatonic pieces (pieces that do not contain a chromatic semitone or enharmonically equivalent
notes), the fifths range grows continuously, supporting a historiography of tonality that proceeds
from diatonicism through chromaticism to enharmonicism (Fétis 1844; Gárdonyi and Nordhoff
2002) – at least from the distant view of the pieces in our corpus. It bears mentioning that these
results strongly depend on both the corpus as well as on the specific parameters used for calcu-
lating the trendlines. While, generally, corpora are aimed at approximating to some degree the
sources available for some historical period (Piotrowski 2019), concrete parameter settings may
be regarded as representing a certain perspective or granularity with which one looks at the data.
It could, for instance, be objected that the highly chromatic music of late madrigalists such as
Gesualdo apparently does not substantially influence the historical trendline in Figure 7. While
Gesualdo is, in fact, the second most prominent composer in the corpus for the 17th century (27

15 One general remark has to be made with respect to historical data. In order to infer a historical trend from data,
more distant data points have lesser influence on a current estimate than close ones, regardless whether they lie in the
past or in the future with respect to the data point under consideration. Taking future values into account to model
present ones might seem like a methodologically inappropriate choice. One could easily amend this issue by choosing a
neighbourhood, in fact a past window, of x0 that only contains data points (xi, yi) where xi < x0.
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Figure 8. Two distinct ways of composing out a hexachord. Top: Josquin Desprez, Missa sine nomine, Agnus Dei
II (1514); bottom: Erik Satie, Ludions, no. 4 “Air du poète” (1923).16

pieces; Table 1), Corelli outweighs him by a factor of about 7 (186 pieces). We believe that this
is appropriate. While Gesualdo’s chromatic style is certainly remarkable, it does – because of its
uniqueness – not represent the general style of this period, which, in turn, is better represented
by Corelli’s works.

The variance in the bootstrapped trend lines is relatively large before 1400, a consequence
of the sparsity of data in that period. The variance is largest, however, in the 19th century
where the data is least sparse. Hence, it is plausible to assume that the variance can be mainly
attributed to the actual variability in the compositions. While the corpus does contain composers
such as Chopin, Alkan, and Liszt who are known for their highly chromatic style and usage of
enharmonicism, leading to a generally higher fifths range of their compositions, the corpus also
contains composers such as Josephine Lang, Robert Franz, and Peter Cornelius, whose works
often exhibit a more conservative style. However, the peak and subsequent decline of the trend
line around the 1880’s should not be over-interpreted since this might be a consequence of the
relatively few pieces from the early 20th century. The variance observed in the bootstrapped
trend lines points to the fact that, while there is a generally growing trend towards chromaticism
and enharmonicism, the diversity in the usage of musical styles – as manifested in the fifths range
of compositions – increases too.

This is illustrated by three compositions that stand out in particular with respect to their fifths
range and have been marked by a cross in Figure 7. The two compositions in the corpus with
the smallest fifths range draw their pitch classes from a hexachord (with a fifths range of 5):
Josquin Deprez’s Agnus Dei II from the Missa sine nomine (1514), a duo in the form of a canon
(“Canon in diapason”) and Erik Satie’s “Air du poète,” no. 4 of his song cycle Ludions (1923).
Despite being separated by more than 400 years, both compositions are characterized by their
limited intervallic possibilities, in particular the absence of the leading tone (Figure 8). On the
other end of the spectrum, Frédéric Chopin’s Polonaise-Fantaisie, op. 61 (1846), is the piece
with the largest fifths range in the corpus, extending from D�� to B�� (31 fifths, but lacking
A��, D��, A��, and E��). Chopin’s Polonaise thus exemplifies the drastic increase of the tonal
vocabulary during the 19th century (Samson 1989), whereas Satie’s employment of the rather
modest hexachordal tone material attests to the simultaneously growing diversity in fifths ranges
of compositions.
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Figure 9. The evolution of tonal pitch-classes for those years where the corpus contains pieces. The coloured bands
show the relative frequencies of tonal pitch-classes in the corpus for any given year. The black dots show the normalized
entropy over the pitch-class distributions in each year, and the black line shows a linear regression. The heatmap shows
correlations between relative pitch-class frequencies.

7. Tonal pitch-class evolution

In the discussion above, the line of fifths emerges as the central organizing space for tonal
pitch-class distributions through the application of PCA. We obtain this result without taking
the temporal distribution of pieces into account. We could moreover observe a historical trend,
reflecting that compositions tend to occupy ever larger segments on the line of fifths, while at
the same time the diversity in fifths range increases as well (Section 6). We now turn our atten-
tion away from the rather simple measure of fifths range to the study of historical developments
in the usage of tonal pitch-classes. Recall that we model a piece xd as a distribution over the
V = 35 tonal pitch-classes. Moreover, each piece is associated with a year of composition or
publication. Recall also that the data set is not uniformly distributed over time (Figure 1). On
the one hand, there are some large gaps between periods, whereas on the other hand some years
contain many pieces at the same time. In order to trace the historical usage of tonal pitch-classes,
i.e. the tonal pitch-class evolution, we calculate the average tonal pitch-class distribution for a
given year, analogously to the overall average tonal pitch-class distribution in the corpus (Figure
4). The corresponding tonal pitch-class evolution plot is shown in Figure 9. It shows, on the
left-hand side as stacked bands coloured according to Figure 3, the relative frequencies of tonal
pitch-classes for the years where the corpus contains pieces. Periods with missing data are clearly
visible by the straight lines (e.g. around 1400). The heatmap on the right-hand side of Figure 9
will be discussed in Section 8.

What is the interpretation of a per-year tonal pitch-class distribution? If a corpus of musical
pieces is seen to represent an approximation of the entire musical material produced within the
chosen historical range, then the per-year distributions can be interpreted as temporal slices of
the entire range. In a way, they approximate the music that was present in a given historical year
and show the average relative frequency of each tonal pitch-class for each year and piece in the
corpus.

Black points on the left-hand side of Figure 9 show the normalized entropy (Cover and Thomas
2006) of the pitch-class distributions for the years given in the corpus, along with a regression line
with 95% confidence intervals. Normalized entropy is an adequate measure for the randomness

16 Recordings can be found at https://youtu.be/hk2EPDbTAvM and https://youtu.be/8jDSAxw5Bnc.

https://youtu.be/hk2EPDbTAvM
https://youtu.be/8jDSAxw5Bnc
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in these distributions for a given year since it is calculated with respect to the number n of non-
zero tonal pitch-classes in that year. It is normalized by its maximal value which is given by
log2(n). If the tonal pitch-class distribution for some year were uniform, the normalized entropy
would be maximal at 1. Note that unnormalized entropy would increase historically since more
and more pitch-classes are available (Section 6) and thus uncertainty would increase. The almost
constant regression line expresses the fact that, although the number of used tonal pitch-classes
increases over time, their distribution at a given historical moment has a similar normalized
entropy, i.e. the randomness in these distributions remains largely similar. Until into the 16th
century, pieces in the corpus consist almost exlusively of natural tonal pitch-classes plus B�, F�,
and C�. The historically increasing fifths range (Figure 7) is reflected in a larger number of pitch
classes towards the end of our time line. Their number increases in particular after 1700 where
composers begin to use more flat as well as more sharp tonal pitch-classes. For some tonal pitch-
classes, it seems to be the case that their evolution curves are almost parallel, at least within some
periods for which data is available.

Recall that the bag-of-notes representation of the corpus implies that tonal pitch-classes are
regarded as independent from one another. The strong similarities between some of the evolu-
tion curves as well as music-theoretical intuition suggest, however, that this is not a sensible
assumption because their mutual distances in tonal space introduce dependencies regarding their
likelihood of occurrence. For the entire corpus from a synchronic perspective this has already
been shown in Section 5. The preceding result strongly indicates that proximity on the line of
fifths is also an important factor for the relative rate of change of pitch-class co-occurrence from
a diachronic angle.

8. Tonal pitch-class co-evolution

How are the evolution curves for the individual tonal pitch-classes related to each other? In other
words, what can be inferred from the co-evolution of tonal pitch-classes? Answering this question
may provide further insight into the organization and mutual dependency of pitches. Since every
tonal pitch-class is associated with a vector that contains the probability of this pitch class for
each year, we define the co-evolution of two tonal pitch-classes as the pairwise correlation ρ

of their evolution vectors.17 The correlations between all tonal pitch-classes are shown on the
right-hand side of Figure 9.

This correlation matrix exhibits a number of interesting regularities. First, its block structure
almost perfectly coincides with segments on the line of fifths that are determined by the num-
ber of accidentals. These segments are here emphasized by the white lines. The three blocks
along the main diagonal of the matrix with relatively strong correlation values correspond to the
co-evolution of tonal pitch-classes with flat, sharp, and no accidentals, respectively (top left to
bottom right). The two blocks in the lower left and upper right corners of the matrix with mod-
erate but positive tonal pitch-class co-evolution values correspond to the correlations of flat with
sharp and, per symmetry, sharp with flat tonal pitch-classes. Note that the diagonals in this matrix
describe interval classes between tonal pitch-classes. The main diagonal describes the unison, the
diagonal above the perfect fifth, the one above that the major second, etc. Since the strongest cor-
relations are found on intervals close to the diagonal, we can conclude that tonal pitch-classes
that are close on the line of fifths, in particular those that come from the same diatonic set, also
correlate highly in their historical evolution, or in other words, they co-occur more frequently if
there is proximity on the line of fifths.

17 The correlation of two vectors p and q is defined as ρp,q = cov(p, q)/σpσq, where cov(p, q) is the covariance and σ

the standard deviation.
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Figure 10. Two-dimensional PCA reduction of tonal pitch-class co-evolution. The black line connecting pitch classes
along the line of fifths has been added post hoc.

The blocks with negative correlations are equally interesting. The weakest correlations overall
can be seen in the parallel diagonals depicting the interval classes of the chromatic semitone and
the tritone, e.g. between A and A�/E�, between E and E�/B�, etc., albeit not through the entire
space but rather only for the central segment of the line of fifths. One can infer that the role of
these intervals, the chromatic semitone and the tritone, is very distinct in white-key music based
on the natural tonal pitch-classes but that they are less pronounced in keys that are further apart
from C on the line of fifths. It seems to be the case that pieces in keys with more accidentals
as key signatures are also more chromatic in general. This calls into question the wide-spread
assumption of transpositional equivalence of keys (for related arguments, see Rom 2011; Quinn
and White 2017). However, this can not be concluded decidedly since the distribution of keys in
the corpus is not part of the data set and hence not taken into consideration here.

Recall that finding the directions of the largest variance in a data set via PCA involves the cal-
culation of a covariance matrix. Accordingly we can apply PCA to the correlation matrix shown
in Figure 9 (right-hand side) in order to find the principal components that account for most of
the variation in the tonal pitch-class co-evolution and to quantify some of the earlier qualitative
observations.18 Figure 10 shows the reduction of the co-evolution matrix to two dimensions via
PCA. Tonal pitch-classes that have high correlations appear close together (e.g. C and G), while
those having low correlations are more distant (e.g. C and F�). The black line connecting the
tonal pitch-classes was added post hoc to emphasize that the co-evolution of tonal pitch-classes
also reveals the line of fifths, at least for tonal pitch-classes close to its centre.

These first two principal components of the tonal pitch-class co-evolution are shown separately
in Figure 11. As before, they correspond to projections to one of the axes in Figure 10, and the
variance explained by each of the components can be interpreted as the importance of these

18 The difference in using the correlation instead of the covariance matrix is that the latter is expressed in terms of the
data that has been standardized to have unit variance.
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Figure 11. Separate plots of the first two principal components jointly accounting for 85% of the variance in the data.

dimensions for the data. The first principal component (PC1) accounts for 56 percent of the
variance in the tonal pitch-class co-evolution and confirms the observation that tonal pitch-class
co-evolution is largely determined by regions of the line of fifths where the tonal pitch-classes
have the same number of accidentals. The wave-like pattern in the first principal component
switches from positive to negative values and back almost exactly at the boundaries between
tonal pitch-classes with two flats (��), one flat (�), no accidentals, one sharp (�), and two sharps
(��), although this is not as clear between the single and double sharps. The second principal
component (PC2) accounts for 29 percent of the variance in the data and corresponds to the
direction of the line of fifths (flat- or sharp-ward), viewed from C. Apparently, while D emerged
as the central tonal pitch-class under a synchronic perspective (Sections 4 and 5), it is C that lies
at the centre from a diachronic vantage point. While more extreme flat pitch-classes, such as C��

and sharp pitch-classes such as B�� are positively correlated, the low and negative correlations
between more central tonal pitch-classes such as B and B� pulls them apart in the reduced space.
A positive correlation between extreme tonal pitch-classes from opposite sides of the line of
fifths spectrum may be surprising at first. The following section will shed light on the historical
contingency of this finding.

Together, the first two principal components account for 85 percent of the variance in pitch-
class co-evolution, whereas this amounted to only 64 percent in the case of pitch-class occurrence
(Figure 6). The line of fifths appears to have a stronger bearing on the co-evolution of tonal
pitch-classes than on co-occurrence. We can also observe that the interpretations of the first two
principal components for co-occurrence and co-evolution is reversed to some extent: for the
former, direction on the line of fifths was the strongest factor and number of accidentals only
secondary; for the latter, the opposite is the case. To summarize, the principal components of the
dimensionality reduction for the tonal pitch-class co-evolution matrix is astonishingly similar
to the principal components of the reduction of the distributions of tonal pitch-classes. In both
cases, the distance on the line of fifths, as well as the distinction between flat, natural, and sharp
tonal pitch-classes accounts for the largest proportions in the variance of the data.

9. Tonal pitch-class co-evolution per historical period

As the previous sections have shown, the fundamental structure underlying tonal pitch-class co-
occurrence as well as the co-evolution of tonal pitch-classes is the line of fifths. We have seen
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that the fifth range of tonal pitch-class distributions largely increases over the historical time
span under consideration here. In order to conclude this study, we finally turn to the question of
whether the concept of tonal pitch-class co-evolution introduced above is useful in order to reveal
differences in usage between different historical periods. To that end, we divide the corpus into
centuries and calculate the tonal pitch-class co-evolution values separately for each period. Since
the whole corpus covers a range of approximately 600 years, this results in seven periods with a
duration of 100 years each, except for the first and last periods, which are somewhat shorter since
the years of the earliest and the latest piece in the corpus do not coincide with the boundaries of
the centuries.

An obstacle in directly applying this methodology to shorter periods is that the distribution
of pieces is far from uniform (Figure 1). For this reason, we apply random sampling in order to
achieve better balance for the respective periods. For each of the centuries from the 15th to the
20th,19 we initialize a Dirichlet distribution with concentration parameter α = (1, . . . , 1) ∈ R

V
+,

V = 35, and add to it the pitch-class distributions of the pieces of the respective period. We add
the distributions and not the counts in order not to favour longer pieces. For periods for which
more pieces are available, this results in an overall lower variance of the Dirichlet distribution.
Conversely, the uncertainty about pitch-class distributions in periods with fewer pieces in the
corpus is captured by a higher variance of the Dirichlet distribution. We then sample 1000 pieces
for each period from the Dirichlet distribution with the updated concentration parameter. This
entails, that a priori all pitch classes are possible in each period, due to the flat prior, but that
those pitch classes that actually occur will be more likely. For each of these sampled pieces
we uniformly sample a year within the range defined by the historical period. Since years are
sampled at random, having very large sample sizes leads to stationary pitch-class distributions
within a period and we therefore chose to only sample 1000 pieces each. In order to reinforce
those years for which we do have data, we add the pieces from the corpus to the collection of
samples. This finally allows us to calculate the average pitch-class distribution for each year in
a given century. Figures 12 and 13 show the results for the six centuries. The left-hand sides
show the tonal pitch-class distributions of sampled and actual pieces, as described above, and
the right-hand side shows the co-evolution heatmaps.

As explained above, we start with a flat prior over all tonal pitch-classes for each century, to
the effect that all tonal pitch-classes are possible but only those that the corpus contains are likely.
The years in which the evolution curves substantially deviate from stationary distributions are
precisely those for which pieces are in the corpus. The 15th, 16th, and 17th centuries contain 218,
60, and 214 pieces, respectively, but those pieces are composed or published in only 12, 11, and
13 distinct years within these periods because most pieces in the corpus from these periods are
published in collections and their individual dates of composition are not known. Nonetheless,
we can observe that the co-evolution heatmaps of all three centuries are largely similar to one
another and show more or less clear block structure that divides the natural from the flat and
sharp tonal pitch-classes.

The situation is quite different for later periods. Not only is the number of pieces in these peri-
ods larger than in most of the earlier ones, but the number of unique years of composition or pub-
lication increases as well. For the 18th century, the corpus contains 412 pieces in 25 unique years,
and for the 19th and 20th centuries we have 865 and 172 pieces in 85 and 21 years, respectively.
The largest difference between the respective heatmaps occurs between the 17th (Figure 12) and
18th (Figure 13) centuries. For the earlier centuries, the flat, the natural, and the sharp tonal
pitch-classes correlate strongly and positively with themselves but strongly and negatively with
one another. Already in the 18th century, but most strongly in the 19th century, one can observe

19 Since the period before 1400 contains only ten pieces in three distinct years, we ignore it in the following
considerations.
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Figure 12. The co-evolution of tonal pitch-classes for the 15th, 16th, and 17th centuries.

that the previous block structure of the co-evolution matrices gives way to a stronger emphasis
of the main diagonal. The tonal pitch-class co-evolution thus provides data-based evidence for
a stark shift in compositional practice between the 17th and the 19th centuries, and one may
interpret this as reflecting a gradual transition from common-practice to extended tonality. With
some warranted caution, this observation may reflect the historical fact that different keys were
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Figure 13. The co-evolution of tonal pitch-classes for the 18th, 19th, and 20th centuries.

often conceived to have unique characteristics (Mattheson 1739; Schubart 1806) that became
less pronounced or even indistinguishable with the rise of equal temperament (Steblin 1983).

This entails also that the assumption of transpositional invariance between keys – whether
the distribution of tonal pitch-classes in a piece is independent of the key – is dependent on the
historical context, and can not be universally assumed (see also Rom 2011; Quinn and White
2017). The tonal pitch-class co-evolution in the early 20th century shows resemblance to both
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the block structure of the 17th century as well as to the broad band along the main diagonal in
the 19th century and thus somewhat represents a consolidation of these two extremes.

10. Conclusion

The main goal of this study was to investigate whether we can draw conclusions about funda-
mental tonal relations in musical compositions with a corpus-based approach. To that end, we
analyzed the Tonal Pitch-Class Counts Corpus (TP3C; Moss, Neuwirth, and Rohrmeier 2020)
corpus, a large historical collection of tonal pitch-class counts in pieces of music. Without mak-
ing any prior assumptions about the relations between these tonal pitch-classes we have shown
that they can be most powerfully explained by invoking the concept of the line of fifths. We
first noted that the corpus-level distribution of tonal pitch-classes exhibits a unimodal symmetric
shape when ordered along the line of fifths. Building on this observation, we have demonstrated
that, over the course of time, composers explore ever wider regions in this tonal space (Section 6).
Furthermore, we introduced the concept of tonal pitch-class co-evolution and applied it to the
entire corpus, as well as to historical subsegments, and provide an empirical justification for the
primacy of the line of fifths also from a diachronic perspective (Sections 7–9).

Our study suggests several directions for future work, for instance the extension of the data
base to a broader range of Western and potentially non-Western repertoires, the inclusion of intra-
musical temporal information such as onsets and durations, as well as the development of more
powerful methods to infer underlying tonal spaces, such as Bayesian modelling (Temperley 2004;
Abdallah, Gold, and Marsden 2016). Our analyses here are based on the orthographic actualities
in our corpus, i.e. in the scores and their digital encodings (see Sections 2 and 3). To what extent
pitch-class spellings reflect notational preferences and conventions of certain composers rather
than characteristics of their harmonic idiom is a subject to be pursued in future research.

The central role of the line of fifths for the organization of tonal material revealed in our study
relates to and extends earlier empirical findings that have shown the importance of the perfect
fifth, its constituent interval, for other musical aspects not considered here, for instance root and
chord progressions (Hedges and Rohrmeier 2011; Moss et al. 2019; Moss, Fernandes Souza, and
Rohrmeier 2020), tonal tension (Lerdahl and Krumhansl 2007; Navarro-Cáceres et al. 2020), as
well as for the historical development of Western tonality (Huang et al. 2017; Yust 2019; Lieck,
Moss, and Rohrmeier 2020; Harasim et al. 2021). However, some of these approaches found the
circle of fifths rather than the line of fifths, simply due to the fact that their studies were based
on MIDI files, thus incorporating enharmonic equivalence. This exemplifies how assumptions
encoded in the data may influence and potentially bias results. While in this case the divergence
between the discovery of the circle of fifths on one hand and the line of fifths on the other may
be seen as marginal, the general lesson from this for empirical music analysis is to pay attention
to unspoken premises and make them explicit whenever possible.
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